Parallel Density-Based Clustering of Complex Objects

نویسندگان

  • Stefan Brecheisen
  • Hans-Peter Kriegel
  • Martin Pfeifle
چکیده

In many scientific, engineering or multimedia applications, complex distance functions are used to measure similarity accurately. Furthermore, there often exist simpler lower-bounding distance functions, which can be computed much more efficiently. In this paper, we will show how these simple distance functions can be used to parallelize the density-based clustering algorithm DBSCAN. First, the data is partitioned based on an enumeration calculated by the hierarchical clustering algorithm OPTICS, so that similar objects have adjacent enumeration values. We use the fact that clustering based on lower-bounding distance values conservatively approximates the exact clustering. By integrating the multi-step query processing paradigm directly into the clustering algorithms, the clustering on the slaves can be carried out very efficiently. Finally, we show that the different result sets computed by the various slaves can effectively and efficiently be merged to a global result by means of cluster connectivity graphs. In an experimental evaluation based on real-world test data sets, we demonstrate the benefits of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population

Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Comparing Model-based Versus K-means Clustering for the Planar Shapes

‎In some fields‎, ‎there is an interest in distinguishing different geometrical objects from each other‎. ‎A field of research that studies the objects from a statistical point of view‎, ‎provided they are‎ ‎invariant under translation‎, ‎rotation and scaling effects‎, ‎is known as the statistical shape analysis‎. ‎Having some objects that are registered using key points on the outline...

متن کامل

PFDC: A Parallel Algorithm for Fast Density-based Clustering in Large Spatial Databases

Clustering – the grouping of objects depending on their spatial proximity – is one important technique of knowledge discovery in spatial databases. One of the proposed algorithms for this is FDC [5], which uses a density-based clustering approach. Since there is a need for parallel processing in very large databases to distribute resource allocation, this paper presents PFDC, a parallel version...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006